A Survey on k-Anonymity Generalization Algorithms

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-Sensitive K-Anonymity with Generalization Constraints

Numerous privacy models based on the k‐anonymity property and extending the k‐anonymity model have been introduced in the last few years in data privacy re‐ search: l‐diversity, p‐sensitive k‐anonymity, (α, k) – anonymity, t‐closeness, etc. While differing in their methods and quality of their results, they all focus first on masking the data, and then protecting the quality of the data as a wh...

متن کامل

Approximation Algorithms for k-Anonymity

We consider the problem of releasing a table containing personal records, while ensuring individual privacy and maintaining data integrity to the extent possible. One of the techniques proposed in the literature is k-anonymization. A release is considered k-anonymous if the information corresponding to any individual in the release cannot be distinguished from that of at least k − 1 other indiv...

متن کامل

Achieving k-Anonymity Privacy Protection Using Generalization and Suppression

Often a data holder, such as a hospital or bank, needs to share person-specific records in such a way that the identities of the individuals who are the subjects of the data cannot be determined. One way to achieve this is to have the released records adhere to kanonymity, which means each released record has at least (k-1) other records in the release whose values are indistinct over those fie...

متن کامل

Enforcement of k-anonymity Through Generalization and Suppression

While limited data set is shown to not guarantee anonymity, k-anonymity is proposed by Dr. Latanya Sweeney of MIT as an alternative way to release public information while ensuring both data privacy and data integrity [1, 2, 3]. k-anonymity is provided by using generalization and suppression techniques. Generalization involves replacing a value with a less specific but semantically consistent v...

متن کامل

k-Anonymity

To protect respondents’ identity when releasing microdata, data holders often remove or encrypt explicit identifiers, such as names and social security numbers. De-identifying data, however, provide no guarantee of anonymity. Released information often contains other data, such as race, birth date, sex, and ZIP code, that can be linked to publicly available information to re-identify respondent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IJARCCE

سال: 2014

ISSN: 2278-1021

DOI: 10.17148/ijarcce.2014.31125